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Microcanonical simulations with a large number of demons 
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Abstract. We generalize the microcanonical algorithm developed by Creutz er al, and make a 
detailed comparison with the exact solution in the case of a two-dimensional Ising model at finite 
volume. We present a new numerical method to compute the temperature in &e microcanonical 
ensemble. This allows us to define a 'thermalization' criterion to estimate the point where the 
differences between canonical and microcanonid results are the smallest. This " i o n  is 
shown to work well in the c u e  of the two-dimensional king system. 

1. Introduction 

Monte Carlo (MC) simulations have become a classical tool with which to investigate a large 
number of problems in physics [I]. Since the first MC algorithm of Metropolis et a2 [Z], 
there has been an ongoing quest for faster algorithms, either to beat critical slowing down 
or to cope with intrinsically slow dynamics such as aging effects in glasses or in disordered 
systems. Microcanonical algorithms, first proposed by Creutz [3J. are typical examples of 
such algorithms. 

The principle of the microcanonical algorithms developed by Creutz etal is as follows. 
One adds to the physical system under study a set of uncoupled discrete and bounded energy 
reservoirs, historically called demons. A new configuration of the whole system, formed 
by the physical system and the demons, is produced by flipping a spin, and simultaneously 
changing the energy of one demon in such a way that the tot& energy is conserved. This 
new configuration is accepted each time the energy difference of the physical system can be 
absorbed by the energy reservoir of the demon (see section ~2 for a detailed description of 
the algorithm). This dgorithm is deterministic and can be implemented using only Boolean 
operations and multispin coding. This is the reason it is fast. For two-dimensional king 
models, and, when the number of demons is fixed or small compared to the number of spins, 
this microcanonical algorithm has been studied by Creutz et al [4-6] and in the context of 
finite-size scaling by Desai et al [7]. More recently Creutz has also shown how to combine 
microcanonical dynamics with cluster algorithms [8]. 

A significant difference between canonical and microcanonical algorithms is that in 
the former case the temperature is an input but the energy has to be computed during the 
simulation while in the microcanonical case the energy is the input and the temperature has 
to be computed. Creutz made the hypothesis that the demon energies obey the Boltzmann 
distribution (this hypothesis can be checked numerically) and computed the temperature from 
it. We propose in this paper a new way of computing the temperature, using the Dobrushing- 
Lanford-Ruelle equations (see later). To compare the microcanonical simulations with the 
canonical results, one invokes the ensemble equivalence in the thermodynamic limit. Of 
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course this equivalence is not exact in the simulations because of finitesize effects. In this 
paper, we make a detailed study of these finite-size effects and their volume dependence 
in the case of a two-dimensional Ising model. We consider a family of microcanonical 
algorithms, each algorithm differing in the number of demons (see later; we take nN 
demons, where N is the number of spins and n = 1,2. . . . , 16). We simulate the two- 
dimensional Ising model usinz this family of microcanonical algorithms and compute the 
difference from the exact solution in the canonical ensemble which is known for any finite 
size [9]. We show that these differences go to zero when the volume N or when the ratio n 
defined above as the number of demons over the number of spins, goes to infinity. We also 
propose a ‘thermalization’ criterion, also valid in the cases where we do not have an exact 
solution, to estimate when these differences are small. Let us call ,9cr the inverse value 
of the temperature computed in the microcanonical ensemble using the Creutz method and 
p o ~ ~  the inverse value of the temperature computed using the Dobrushing-Lanford-Ruelle 
equations. We propose to take kr - POLR as an estimator of the difference between the 
canonical and microcanonical results. We show that this criterion works well in the case of 
the two-dimensional king model. 

Originally microcanonical algorithms were proposed because they were faster than the 
Metropolis algorithm. We would like to stress here another motivation for their study, 
related to the breaking of ergodicity. One of the major difficulties in the study of disordered 
systems is the existence of high energy harriers separating local energy minima (‘valleys’). 
For finite volumes the height of the barriers is finite. Any canonical algorithm will jump 
from one valley to the other, provided one waits long enough, in other words the system is 
fully ergodic for finite volumes. Ergodicity breaking can only appear in the infinite volume 
limit. Microcanonical algorithms, on the other hand, display a very different behaviour. 
The system remains trapped and explores the valley where it was at time zero, providing, of 
course, there is not enough energy available to jump over the barrier. It may be physically 
interesting, in certain cases, to avenge over configurations inside a single valley. This 
is possible with the microcanonical algorithm [IO]. Before applying the microcanonical 
algorithm to such interesting but difficult cases, we would like to gain a better understanding 
of it by studying a system over which we have full control. This is the purpose of the present 
paper. In the case of  the existence of a single valley, as in the case of a ferromagnet above 
the Curie temperature, it has been argued hy Bhanot et al that the microcanonical algorithm 
is ergodic provided a small amount of randomness is added, and our simulations confirm 
this. 

Section 2 contains a presentation of the 
microcanonical algorithm. In section 3, we present a new method to compute the effective 
temperature. In section 4, the critical dynamical exponent is evaluated and found to be 
close to the exponent of the Metropolis algorithm [15,12]. We discuss the advantages 
of the different methods to obtain the temperature, propose the criterion defined as 
above, and investigate other thermodynamical variables, such as the energy fluctuations 
of microcanonical simulations. The role of the ratio n, the number of demons over number 
of spins, is investigated and we show that the best results are obtained for a large ratio n. 
This does not reduce the speed of the simulations. Conclusions are presented in the final 
section. 

This paper is organized as follows. 

2. Microcanonical dynamics 

Consider a system denoted by S formed by the union of two independent subsystems. The 
first subsystem is a ferromagnetic king spin system on a two-dimensional square lattice of 
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finite volume N ,  with periodic boundary conditions, which we denote by 1. The second 
subsystem is a set of nN independent demons, denoted by D. A demon is characterized by 
a discrete energy variable ed, constrained to be between two limit values, e$n and e;=. So 
the total energy of the whole system is 

1 k=l , .  ... n 
As usual the first sum is over nearest-neighbouring spins in the king subsystem, and the 
coupling constant J is positive. The factor of 1/4 in the Ising energy is chosen so that 
flipping a spin requires an energy which is a multiple of J .  In the following, we will denote 
by N ( i )  the set of spins 'which are the nearest-neighbours of the spin si. With this notation 
the local energy of the spin si is defined as E,,,, sisj. 

A microcanonical dynamics which conserves the total energy is imposed on the whole 
system S. Let us define a single step of this dynamics. An elementary move mi,k, formed 
by flipping the spin si and changing the energy of demon indexed by (i, k )  to a new value 
e$, is called possible if the sum of local energy of the spin and the energy of the demon 
can be maintained unchanged during this move, i.e. if there exists e$ E (e&", ..., e&} 
such that the local energy of the spin si remains unchanged after the move. Ifs, and e$ 
are the values of the spin and of the demon energy respectively, the new values si = -si 
and .ifk = e$ + J / 2  EjEN(I) sisj, are accepted provided e$" < efk < e k .  In this case, 
the total energy 'H3 does not change. A single step of the dynamic consists in choosing a 
spin si and a demon indexed by (i. k ) ,  and accepting the move mi,k, if it is possible. In 
the microcanonical ensemble where the equilibrium distribution is uniform, this dynamics 
checks the detailed balance, i.e. if the elementary move mi,k is accepted then the inverse 
move is also accepted as a possible move, and with probability one in both cases. No 
rigorous proof of ergodicity exists, but the introduction of a small amount of randomness 
should ensure ergodicity, especially since the system can only be trapped by energy barriers 
which are at least proportional to the number of spins. This problem has been carefully 
discussed by Bhanot et al [4] in the case of a small number of demons compared to the 
number of spins. 

The implementation of the algorithm is now briefly described. A multispin coding 
algorithm is used with 16 spins for each 32-bit word, allowing updating of 16 spins 
simultaneously. The capacity of energy storage of each demon e$,-e& is fixed to 3 J ,  and 
16 demons are coded in each 32-bit word. All the algebra for updating and measurement 
needs only Boolean-type or integer-type operations. At the beginning a disordered sequence 
combining spins and demons, in which n demons are linked preferentially to one single spin, 
is fixed. After several lattice sweeps, we change randomly this updating order and shuffle 
the demons, thus introducing randomness which makes the algorithm non-deterministic and 
prevents experimentally any ergodicity breaking. This small amount of randomness has a 
negligible effect on the speed of the algorithm. 

3. Determination of temperature 

To compare the microcanonical simulations with  the^ exact canonical results requires a 
method to extract the temperature from the simulations. 

The first method was presented by Creutz [3] and her principle relies on the fact that, 
at the thermodynamic limit, the two subsystems Z and D are 'in equilibrium' at the same 
temperature. In the canonical ensemble, the partition function of the whole system S 
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decouples itself into a product of two partition functions, one for the king spin subsystem, 
the other for the demon subsystem. The energy of the demons is then distributed with a 
Boltzmann law at the temperature 1/p. and the probability P(e)  that a demon, randomly 
chosen, has the energy e is 

This implies the following relation in the canonical ensemble 

. .  

Then, for a large volume N ,  this relation is checked in the microcanonical simulations by 
making use of the ensemble equivalence at the thermodynamic limit. If the dynamics is 
ergodic (experimentally it is so), P(e)  can be replaced by the timeaveraged fraction of 
demons possessing the energy e .  In these conditions, we can compute the first effective 
temperature, denoted by per, by taking the average of all the ,9 corresponding to different 
energy values, and errors bars come naturally from the variance of the data. We will discuss 
in the next section the quality of the fit by computing the xZ. 

We now propose a new method, using only the spin subsystem Z, to extract a temperature 
from the simulations. This method is based on the Dobrushin-Lanford-Ruelle (DLR) 
relations [14], valid in the canonical ensemble, which express that a given region is in 
thermal equilibrium with its surroundings. In the general case where the coupling constants 
Jij are not identical, for the two-spin correlation function (SOSI), the relation reads 

(3.3) 

where F+ = Fo + F I ,  F- = FO - FI, and FO =~xicH(0) J~isi, FI = J I ~ s ;  being 
the fields acting respectively on the spins SO and SI. Brackets (. . .) denote an average over 
all the configurations. Formula (3.3) is only valid in the canonical ensemble. But in the 
microcanonical ensemble, it also allows us to define an effective temperature as follows. 
From the simulations, we compute the joint probability P(Fo,  F1) that (Fo, Fl )  were the 
fields acting on the spins SO, SI, and the average (SOSI). The second term of the equation (3.3) 
then becomes a computable function of p and the local temperature sought corresponds to 
a zero of this equation. The final effective temperature which we will denote by 1/p~m is 
given by averaging those local temperatures over each couple of neighbouring spins. The 
ensemble equivalence ensures that, at infinite volume N ,  this effective temperature coincides 
with the one imposed on the canonical ensemble. 

We would like to stress the following important point: the (DLR) relations are local. This 
implies that (DLR) relations are also verified in the case where average over configurations is 
only over a subset of the full set of possible configurations. For example, in a ferromagnet 
below the Curie temperature these relations are still valid even if the sum is only over 
configurations of positive magnetization. In particular this means that these relations remain 
vue in each ergodic subsystem, when there is ergodicity breaking. Thus, for spin glasses, 
they should be true below the transition temperature. This method would then determine a 
temperature corresponding to the configurations which can be reached inside a single valley. 

In the case of a two-dimensional finite-size king model, exact expressions for the 
partition function and other relevant quantities, such as, for example, the energy, have been 
explicitly given by Ferdinand and Fisher [9]. This result allows a comparison between 
the effective temperatures 1/p coming from the simulations and the temperature of the 
canonical ensemble, corresponding to the energy of the simulation, and takes into account 
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in a natural way all finite-size effects. We note this temperature pm. Moreover this exact 
solution also yields other thermodynamically relevant quantities, such as the heat capacity, 
which can be fruitfully compared to the microcanonical results. 

It is clear that the relation of fluctuation-dissipation for’the energy is still not true 
in the microcanonical ensemble. However, measuring the energy fluctuations constitutes 
a rather good way to estimate the gap between the distribution we are simulating and a 
canonical distribution. So let us define the microcanonical energy fluctuations e for the 
king subsystem in our microcanonical ensemble by 

e N J B )  = NP’[(XZ - [XT1,c)51,c (3.4) 
where the brackets [. . .Ipc denote an average in the microcanonical ensemble. Clearly, 

depends strongly on the number n of demons per spin, since the conservation of the 
total energy 7 - l ~  leads to the following equality between the energy fluctuations in the two 
subsystems Z and V (Xz - [X&,)’ = (ED - [X&)*. Therefore e = 0 if there is no 
demon. For N fixed, and when n is large, we show in appendix A the sketch of the proof 
that the king subsystem distribution tends towards the canonical Boltzmann distribution. 
This implies that when n is large, the canonical heat capacity is recovered for f?. 

4. Results and discussion 

The evaluation of the exponential autocorrelation time yields the two major following pieces 
of  information: when it is computed at the critical temperature, it allows one to estimate the 
critical dynamical exponent; it also enables a rough estimation to be made of the number 
of steps that must be discarded before taking measurements. 

Typically, for an observable B the autocorrelation function Cs(t) decays exponentially: 

where Z&B is the exponential autocorrelation time. The dynamical finite-size Hcaling 
hypothesis leads to the relation z ~ ~ ~ . ~ ( L )  - Lz”,  for asymptotically large L and T = 

~ T , ( L  = CO). As it is generally believed that for king models this dynamical exponent 
does not depend on the observable B [IS, 161, we have chosen to evaluate this exponent z 
for the energy of the king subsystem: In the simulations, the energy which is the input 
parameter is fixed to the value corresponding to T,(oo). Since the evaluation of the 
integrated autocorrelation time and of the exponential autocorrelation time may lead to 
different exponents [ll], we have computed the exponential autocorrelation time by a fit 
of the linear part of log[C~(f)] .  Precisely, the autocorrelation function C&) has been 
approximated by 

where M is the length of the time-series for the energy, and 

(4.3) 
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The error bars have been extracted from eight different simulation runs. We show in figure 1, 
the dependence of with the linear size L of the lattice. The critical exponent z is 
obtained from a least-squares fit of the slopes of the curves Iog(renp,E) = constant + z . L, 
for two different values of n. For n = 1, we found z = 2.38 0.27, and for n = 8, 
z = 2.09 f 0.15. These results show that the dynamical critical exponent does not 
seem to depend on the ratio n,  and thai there is no perceptible difference between this 
critical exponent and the one deduced from a local algorithm for the two-dimensional king 
system [12]. These results are also compatible with other results [I31 obtained from the 
original version of Creutz's algorithm. This shows that critical slowing down persists in 
the microcanonical simulations, and this is as expected, since when n is large the algorithm 
tends towards the Metropolis algorithm. 

Figure 1. Inverse of the autocorrelation time for the energy l/rexp,E as a function of the linear 
size of the lattice L. for T = T,, for n = 1 and n = 8. The dashdotted curve (- . -) 
represents the tit for n = 8 and the doned curve (---) for n = 1. We show in the inset an 
example of a typical autocorrelation function for L = 48 and n = 8. 

Let us now discuss the demon energy distribution. Let be "(e )  the number of times that 
a demon has the energy e in m measurements (therefore E, "(e)  = m). The quality of the 
fit of "(e) by the distribution mP(e) ( P ( e )  is given by the equation (3.1), and p = &), is 
expressed by xz = C,(N,(e) - mP(e))'/o(e)*, where .(e) is the variance of "(e). We 
have estimated u(e) by dividing the simulation run in 16 blocks and computing the variance 
of the different N,/l&). Rpically, far from the critical temperature (IT - TcI > O.l), 
x' x 0.04 for one degree of freedom, for a 64 x 64 lattice, independently of both the 
number of measurements, and on the volume N of the king system. This means that the 
hypothesis that demon energy obeys the Boltzmann distribution fits our data very well far 
from the critical temperature. Further we show in appendix B that if the energy distribution 
of demons is Boltzmannian, then the microcanonical algorithm is rigorously equivalent to 
the Metropolis algorithm. 

The estimation of the time of the diffusion of the energy through the set of demons 
constitutes an important measure of the equilibration time of the 2, subsystem. Suppose the 
system is thermalized: we redistribute the demon energy in such a way that the maximum 
number of them has energy either e i u  or eLn, and we resume the dynamics. The energy of 
the demons is going to diffuse through the whole set of demons. How much time will we 
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need to again be in a thermalized state? We have estimated this time by computing at each 
sweep a quantity Q, defined as the squared distance between the rearranged distribution and 
the Boltzmann distribution at the temperature 1/j3: 

e Be - N(e))' 
1 Q = - x ( N  - 

14 
(4.4) 

where N(e)  is defined as the number of demons having energy e,  and the normalization 
2 = E,,, Ne-#'. We plot Q on a logarithmic scale against time in figure 2. Exponential 
convergence of N ( e )  towards the Boltzmann distribution is found, with a characteristic time 
equal to 2.5 lattice sweeps for a 96 x 96 lattice near p = 0.27. After 20 lattice sweeps 
we again find fluctuations identical to those when the system is at the thermal equilibrium. 
Therefore, the energy diffuses very quickly through the set of demons. Let us recall that 
we permute the demons after each 10th lattice sweep: if we only mix randomly the set of 
demons every 100 lattice sweeps, the characteristic' time is increased by a factor of order 5. 

o . l . . . . . l  / . /  I / , / ,  I , I / , I / . I  I /  

0 : N = 2 4 x 2 4  
0 : N = 4 8 x 4 8  
0 : N = 96rY6 

0 
0,  , . I , , ,n, I ' I  ' I 

0 10 2 0  30 40 50 
laltice sweep 

Figure 2. Variation of the quadratic distance Q between the demon distribution and lhe 
thermalized distribution of the temperalure 1 / B  against time counted in laltice sweeps for a 
temperature around ,8 z 0.27, and for different lattice sires (n = 1). 

Moreover, we deduce from our simulations that for lattices of size lesser or equal to 
L = 128, two measurements are almost uncorrelated for time-spacing of the order of 100 
lattice sweeps. So we have decided to use the following scheme: In general, we ran a 
total of 150000 iterations,. discarding the first 50000 iterations (to allow the system to 
reach equilibrium), and then taking measurements once every 100 lattice sweeps. Unless 
it is otherwise specified, the error bars have been obtained with several simulation runs, 
generally 8 or 16. 

We have compared the two effective temperatures from the simulations with the 
corresponding temperature in the canonical ensemble. For two different temperatures, 
p M 0.27 which is far from the critical temperature pc = 0.4407, and j3 w 0.40 closer 
to a, we have plotted the differences between the three methods, Ap~m,m = j 3 0 ~ ~  - ~ F F ,  

Afir.m - BFF, and A&.DLR = pcr - ~ ~ D L R ,  as functions of 1 / N  for n = 1. We 
observe that, for both values of the temperatures, the three methods converge towards the 
same limit when the volume N increases (see figure 3). This confirms experimentally 
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the theoretical predictions for the microcanonical simulations, at large volume. Moreover, 
our results are compatible with a power law behaviour for the three differences, Ap: for 
p FJ 0.27 and p 0.40, we have found AB = c - N-m(E.n) ,  with an exponent a priori 
depending on the ratio n, but which does not seem to vary with the energy (see figure 3). 
Actually, a least-squares fit of all data for A~DLR,FF gives m = 1.89 & 0.15 for j3 % 0.27. 
At low temperature, the proportionality factor c is smaller for A~~DLR,FF which means that 
the temperature computed from the (DLR) relation (3.3) is slightly better than Creutz's 
temperature, compared to the temperature of the canonical ensemble. If we do not know the 
exact solution for the system, we can define a 'thermalization' criterion for the simulations: 
A,5',-r,DLR has to be as small as possible and has to decrease as L increases since at the 
thermodynamic limit ~ D L R  = ,6cp 

Figure 3. Comparison between the three different methods of computing the tempemre. 
Three differences between the inverse temperatures are shown against 1 f L  for n = 1 near two 
temperatures 0 z= 0.27 and p % 0.40. Error ban come from eight simulations ms. A slope of 
1.89 is indicated in the figure. 

We have also compared, for various ratios n, the temperature given by the simulations, 
either by DLR'S or Creutz's methods, with the exact temperature computed from the exact 
canonical solution. In figure 4 we show, for a fixed volume of spins N = 48 x 48, the 
relation of these two temperatures to the energy U of the Ising subsystem Z. We find a 
decrease in this difference A,&R,FF with n at any temperature. This is in  agreement with the 
result that when n tends towards infinity, the k ing  subsystem Z is described by a canonical 
Boltzmann distribution in which (DLR) relations are proven. We have also remarked that, 
first, A&,U,FF is positive and grows when T tends towards T, by the above values, and 
second, A ~ D L R , ~  is negative and diminishes when T tends towards T, by below values. 
Therefore there is a sharp variation in Ap around 'f, with a change of sign, but we have no 
explanation for this. 

We have compared the microcanonical energy fluctuations for different values of n with 
the heat capacity of the exact canonical solution. The microcanonical energy fluctuations 
defined in the equation (3.4) &.n fora 48 x 48 spin lattice are shown, for different values 
of n, together with the exact heat capacity for the corresponding two-dimensional Ising 
system in figure 5. Two important results are worth noticing. First, the difference between 
the simulations, and the exact solution, at a given temperature is smaller far from Tc, than it 
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-1 : ~ n  = 1 
o : n = a  

-0.0005 - 

Figure 4. The difference between the inverse temperatures given by the exact solution and 
DLR’S method against energy per site U. for a 48 x 48 lanice for n = 1 and n = 8. Error bars 
come from 16 simulation mns. 

is near to T,. Next, as the ratio n increases, the microcanonical energy Buctuations become 
closer to the canonical heat capacity at finite size. This is in agreement with the theoretical 
convergence of the spin system towards the canonical dishbution, when n increases. At 
very large n the fluctuation-dissipation relation for energy should then be recovered. 

E y r e  5. Microcanonical energy fluctuations per site divided by the square ofthe tempemre 
CJNB”. against the intemal energy LIJN, for a 48 x 48 lattice for different values of n. The 
full curye line represents the exact solution for the canonical heat capacity. Typical error bars 
are shown around U J N  = -1.4 and U J N  = - 1 0  far from U(T,). error bars are smaller than 
the symbol% 

Let us now analyse the microcanonical energy fluctuations e at the critical temperature, 
compared to the size L of the lattice. Following the theory of finite-size scaling developed 
by Fisher (see [17] for a review), and the work of Ferdinand and Fisher [9], it is known that 
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C(T,) behaves as Ao log@) with Ao = (2/x)(log((l+&))z = 0.4945. We experimentally 
observe a logarithmic variation of in function of the size L, with a proportionality factor 
strongly dependent on n (see figure 6). We have extracted this proportionality factor A(n)  
defined by 

C N , ~ ( T )  = A b )  b ( L )  + (4.5) 
where N = L2 for a two-dimensional lattice. The proportionality constant A(n) is found to 
increase with the number of demons, remaining between the null value and the canonical 
value Ao. This means that (AX# has the same behaviour as the canonical heat capacity, up 
to a multiplicative constant A(n)  which tends, with increasing n,  towards the canonical value. 
So the Auctuation-dissipation relation becomes valid for large n, in the microcanonical 
ensemble. We show the results in table 1. 

Table 1. Proportionality factor A. for various number of demons per spin n. 

n I 2 4 8 16 Au 

A(n) 0.0330 0.1063 -0.2650 0.3305 0.3730 0.4915 

We have found that the magnetization fluctuations in the simulations are compatible with 
fluctuations in the canonical ensemble. The susceptibility is then defined as x = a M j a B  = 
N p ( A M ) * .  The results are found to be in agreement with the classical results of [18], and 
do not seem io depend on the number of demons per spin, n.  We have also analysed IMI 
(the average on all the measurements of the absolute value of the magnetization of the Ising 
subsystem) as a function of IT - Tcl for a given size L of the lattice (see figure 7). We 
have found the same results as Landau [18]. We have computed the scaling function X, 
where lMlLp/” = X(L’I”IT - Tel). For T c T and large x = L’/”IT - TJ, it is known 
that X ( x )  x EXB. We have estimated the scaling exponent ,3 of the X function with 
the hypothesis that, first we know Tc (the critical temperature of an infinite volume two- 
dimensional Ising system) and v = 1, and second, there is no dependence in n (that which 
is qualitatively checked). A least-squares fit of log(lMILB/”) of all the data in the range 
T < 0.98Tc yields ,3 = 0.106& 0.012 close to the theoretical value of 1/8. Above c, 
a similar least-squares fit of all the data in the range T > 1.O2Tc yields the exponent 

= -0.866f.009 for the scaling function X ( x )  % BxB,  in good agreement with the result 
of -7/8. 

We have also made a similar study for the susceptibility, computed with the fluctuations 
of the magnetization, and we find an ordinary scaling for x :  

X T  O( I 1  - TC/TI-‘ for T > Tc (4.6) 
and we find y = 1.744 f .016 (with a least-squares fit of all data in the range T > l.lTc) 
in very good agreement with the theoretical value of 7/4 (see figure 8). 

5. Conclusion 

The results presented bere allow us to investigate a generalized ‘microcanonical’ algorithm, 
and to compare the results with the canonical results for a two-dimensional Ising lattice. 
We have shown experimentally that the two parts of the system, demons and lattice, are 
at equilibrium at the same temperature. We consider that these simulations constitute an 
experimental verification of ergodicity, but it remains to give a rigorous theoretical proof 
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Figure 6. Finitesize scaling plot for the heat capacity-up to a multiplicative constant l / N o 2 -  
at temperature T, against the linear size L of the lattice, for several values of n. Plus Signs 
represent the exact solution of Ferdinand and Fisher. 

. , I  , , , , , , , ,  0.021 ' ' " , , , , '  ' ' " "  

0.001 0.01 0.1 1 

Figure 7. Finite-size scaling plot for the absolute value of 'magnetization against the reduced 
temperature E, for a 48 x 48 lattice for different values of n. The upper data (M 9 0.55) 
correspond to the temperatures below Tc (E = 1 - TITc), and the lower data correspond to the 
temperatures above T, (E = 1 - TJTL 

of the ergodicity for the microcanonical algorithm. We have shown how the fluctuations 
of the energy approach the.canonical fluctuations when the set of demons begins to act as 
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Figure 8. Finitesize scaling plot for the susceptibiliry against 1 - Tc f T, for a 48 x 48 lattice 
for different values of n. 

a thermostat. A new method to measure the temperature of the system has allowed us to 
define a 'thermalization criterion', measuring how close the microcanonical system is to 
the canonical ensemble. We believe further that this algorithm can be fruitfully applied to 
disordered systems such as spin glasses or to the random field Ising model where it can 
be extremely useful to average in a single 'valley'. Finally, we find experimentally that 
the dynamical exponent for the autocomelation time is the same as that for the Metropolis 
Monte Carlo dynamics. 
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Appendix A. Energy distribution of the Xsing subsystem for large n 

We show here that for N fixed, and n tending towards infinity, the Ising subsystem Z adopts 
a canonical Boltzmann distribution for the energy. 

The microcanonical distribution for the energy E is 

which restricted to Z (i.e. after integration over D) becomes 

dP(Z) C( W [ E - X z l d Z  

/ d P ( T ) = I  
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where 
W E D ]  df (D)S(ED - X D ) .  s 

Now when R is large, the volume W[En]  of the fixed energy set of demons increases as 

where n goes to infinity at fixed ratio Eo/n = e. The substitution of this result into the 
configuration probability of the Ising subsystem leads to 

= dZ exp(-s'(e)Xz) exp(ns(e)). 

This proves that the small Ising system has a canonical distribution with 

ds p = - .  de 

Appendix B. Equivalence between the microcanonical and Metropolis algorithms if 
the energy distribution of demons is Boltzmannian 

We show here that if the distribution of demons is canonical then the microcanonical 
algorithm checks the detailed balance condition, and is equivalent to the Metropolis 
algorithm. Let e$" = 0, and e:, = 35. The elementary moves mjr can change the 
Ising energy by the following values: AXz = 0. fJ, 225. The probability that a move 
involving a change of energy of AXT is accepted is given by 

P(ed > ~7-h) if AXT > 0 
P(AX1) = 1 if AXz= 0 1 P(ed < 3 J - AX=) if AXz c 0. 

The detailed balance condition regading the canonical equilibrium distribution is easily 
checked for this probability of transition. For example, if AX1 =~+J, we have 

This proves that the microcanonical algorithm is equivalent to the Metropolis algorithm. 
This result can be extended to any value of e:u. 
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